
Arquivo queues.conf

[general]

;

; Global settings for call queues

;

; Persistent Members

; Store each dynamic member in each queue in the astdb so that

; when asterisk is restarted, each member will be automatically

; read into their recorded queues. Default is 'yes'.

;

persistentmembers = yes

;

; Keep Stats

; Keep queue statistics during a reload. Default is 'no'

;

keepstats = no

;

; AutoFill Behavior

; The old/current behavior of the queue has a serial type behavior

; in that the queue will make all waiting callers wait in the queue

; even if there is more than one available member ready to take

; calls until the head caller is connected with the member they

; were trying to get to. The next waiting caller in line then

; becomes the head caller, and they are then connected with the

; next available member and all available members and waiting callers

; waits while this happens. The new behavior, enabled by setting

; autofill=yes makes sure that when the waiting callers are connecting

; with available members in a parallel fashion until there are

; no more available members or no more waiting callers. This is

; probably more along the lines of how a queue should work and

; in most cases, you will want to enable this behavior. If you

; do not specify or comment out this option, it will default to no

; to keep backward compatibility with the old behavior.

;

autofill = yes

;

; Monitor Type

; By setting monitor-type = MixMonitor, when specifying monitor-format

; to enable recording of queue member conversations, app_queue will

; now use the new MixMonitor application instead of Monitor so

; the concept of "joining/mixing" the in/out files now goes away

; when this is enabled. You can set the default type for all queues

; here, and then also change monitor-type for individual queues within

; queue by using the same configuration parameter within a queue

; configuration block. If you do not specify or comment out this option,

; it will default to the old 'Monitor' behavior to keep backward

; compatibility.

;

monitor-type = MixMonitor

;

; UpdateCDR behavior.

; This option is implemented to mimic chan_agents behavior of populating

; CDR dstchannel field of a call with an agent name, which you can set

; at the login time with AddQueueMember membername parameter.

;

; updatecdr = no

;

; Note that a timeout to fail out of a queue may be passed as part of

; an application call from extensions.conf:

; Queue(queuename,[options],[optionalurl],[announceoverride],[timeout])

; example: Queue(dave,t,,,45)

; shared_lastcall will make the lastcall and calls received be the same in

; members logged in more than one queue.

; This is useful to make the queue respect the wrapuptime of another queue

; for a shared member

;

shared_lastcall=no

;

;[markq]

;

; A sample call queue

;

; Musicclass sets which music applies for this particular call queue.

; The only class which can override this one is if the MOH class is set

; directly on the channel using Set(CHANNEL(musicclass)=whatever) in the

; dialplan.

;

;musicclass = default

;

; An announcement may be specified which is played for the member as

; soon as they answer a call, typically to indicate to them which queue

; this call should be answered as, so that agents or members who are

; listening to more than one queue can differentiated how they should

; engage the customer

;

;announce = queue-markq

;

; A strategy may be specified. Valid strategies include:

;

; ringall - ring all available channels until one answers (default)

; leastrecent - ring interface which was least recently called by this queue

; fewestcalls - ring the one with fewest completed calls from this queue

; random - ring random interface

; rrmemory - round robin with memory, remember where we left off last ring pass

; linear - rings interfaces in the order specified in this configuration file.

; If you use dynamic members, the members will be rung in the order in

; which they were added

; wrandom - rings random interface, but uses the member's penalty as a weight

; when calculating their metric. So a member with penalty 0 will have

; a metric somewhere between 0 and 1000, and a member with penalty 1 will

; have a metric between 0 and 2000, and a member with penalty 2 will have

; a metric between 0 and 3000. Please note, if using this strategy, the member

; penalty is not the same as when using other queue strategies. It is ONLY used

; as a weight for calculating metric.

;

;strategy = ringall

;

; Second settings for service level (default 0)

; Used for service level statistics (calls answered within service level time

; frame)

;servicelevel = 60

;

; A context may be specified, in which if the user types a SINGLE

; digit extension while they are in the queue, they will be taken out

; of the queue and sent to that extension in this context.

;

;context = qoutcon

;

;----------------------QUEUE TIMING OPTIONS------------------------------------

; A Queue has two different "timeout" values associated with it. One is the

; timeout parameter configured in queues.conf. This timeout specifies the

; amount of time to try ringing a member's phone before considering the

; member to be unavailable. The other timeout value is the second argument

; to the Queue() application. This timeout represents the absolute amount

; of time to allow a caller to stay in the queue before the caller is

; removed from the queue. In certain situations, these two timeout values

; may clash. For instance, if the timeout in queues.conf is set to 5 seconds,

; the retry value in queues.conf is set to 4, and the second argument to Queue()

; is 10, then the following may occur:

;

; A caller places a call to a queue.

; The queue selects a member and attempts to ring that member.

; The member's phone is rung for 5 seconds and he does not answer.

; The retry time of 4 seconds occurs.

; The queue selects a second member to call.

;

; How long does that second member's phone ring? Does it ring for 5 seconds

; since the timeout set in app_queue is 5 seconds? Does it ring for 1 second since

; the caller has been in the queue for 9 seconds and is supposed to be removed after

; being in the queue for 10 seconds? This is configurable with the timeoutpriority

; option. By setting the timeoutpriority to "conf" then you are saying that you would

; rather use the time specified in the configuration file even if it means having the

; caller stay in the queue longer than the time specified in the application argument.

; For the scenario described above, timeoutpriority=conf would result in the second

; member's phone ringing for 5 seconds. By specifying "app" as the value for

; timeoutpriority, you are saying that the timeout specified as the argument to the

; Queue application is more important. In the scenario above, timeoutpriority=app

; would result in the second member's phone ringing for 1 second.

;

; There are a few exceptions to the priority rules. For instance, if timeoutpriority=appp

; and the configuration file timeout is set to 0, but the application argument timeout is

; non-zero, then the timeoutpriority is ignored and the application argument is used as

; the timeout. Furthermore, if no application argument timeout is specified, then the

; timeoutpriority option is ignored and the configuration file timeout is always used

; when calling queue members.

;

; In timeoutpriority=conf mode however timeout specified in config file will take higher

; priority than timeout in application arguments, so if config file has timeout 0, each

; queue member will be called indefineately and application timeout will be checked only

; after this call attempt. This is useful for having queue members with custom timeouts

; specified within Dial application of Local channel, and allows handling NO ANSWER which

; would otherwise be interrupted by queue destroying child channel on timeout.

;

; The default value for timeoutpriority is "app" since this was how previous versions of

; Asterisk behaved.

;

;timeout = 15

;retry = 5

;timeoutpriority = app|conf

;

;-----------------------END QUEUE TIMING OPTIONS---------------------------------

; Weight of queue - when compared to other queues, higher weights get

; first shot at available channels when the same channel is included in

; more than one queue.

;

;weight=0

;

; After a successful call, how long to wait before sending a potentially

; free member another call (default is 0, or no delay)

;

;wrapuptime=15

;

; Autofill will follow queue strategy but push multiple calls through

; at same time until there are no more waiting callers or no more

; available members. The per-queue setting of autofill allows you

; to override the default setting on an individual queue level.

;

;autofill=yes

;

; Autopause will pause a queue member if they fail to answer a call

;

;autopause=yes

;

; Maximum number of people waiting in the queue (0 for unlimited)

;

;maxlen = 0

;

; If set to yes, just prior to the caller being bridged with a queue member

; the following variables will be set

; MEMBERINTERFACE is the interface name (eg. Agent/1234)

; MEMBERNAME is the member name (eg. Joe Soap)

; MEMBERCALLS is the number of calls that interface has taken,

; MEMBERLASTCALL is the last time the member took a call.

; MEMBERPENALTY is the penalty of the member

; MEMBERDYNAMIC indicates if a member is dynamic or not

; MEMBERREALTIME indicates if a member is realtime or not

;

;setinterfacevar=no

;

; If set to yes, just prior to the caller being bridged with a queue member

; the following variables will be set:

; QEHOLDTIME callers hold time

; QEORIGINALPOS original position of the caller in the queue

;

;setqueueentryvar=no

;

; If set to yes, the following variables will be set

; just prior to the caller being bridged with a queue member

; and just prior to the caller leaving the queue

; QUEUENAME name of the queue

; QUEUEMAX maxmimum number of calls allowed

; QUEUESTRATEGY the strategy of the queue;

; QUEUECALLS number of calls currently in the queue

; QUEUEHOLDTIME current average hold time

; QUEUECOMPLETED number of completed calls for the queue

; QUEUEABANDONED number of abandoned calls

; QUEUESRVLEVEL queue service level

; QUEUESRVLEVELPERF current service level performance

;

;setqueuevar=no

;

; if set, run this macro when connected to the queue member

; you can override this macro by setting the macro option on

; the queue application

;

; membermacro=somemacro

; How often to announce queue position and/or estimated

; holdtime to caller (0=off)

; Note that this value is ignored if the caller's queue

; position has changed (see min-announce-frequency)

;

;announce-frequency = 60

;

; The absolute minimum time between the start of each

; queue position and/or estimated holdtime announcement

; This is useful for avoiding constant announcements

; when the caller's queue position is changing frequently

; (see announce-frequency)

;

;min-announce-frequency = 15

;

; How often to make any periodic announcement (see periodic-announce)

;

;periodic-announce-frequency=60

;

; Should the periodic announcements be played in a random order? Default is no.

;

;random-periodic-announce=no

;

; Should we include estimated hold time in position announcements?

; Either yes, no, or only once.

; Hold time will be announced as the estimated time.

;

;announce-holdtime = yes|no|once

;

; Queue position announce?

; Valid values are "yes," "no," "limit," or "more." If set to "no," then the caller's position will

; never be announced. If "yes," then the caller's position in the queue will be announced

; to the caller. If set to "more," then if the number of callers is more than the number

; specified by the announce-position-limit option, then the caller will hear that there

; are more than that many callers waiting (i.e. if a caller number 6 is in a queue with the

; announce-position-limit set to 5, then that caller will hear that there are more than 5

; callers waiting). If set to "limit," then only callers within the limit specified by announce-position-limit

; will have their position announced.

;

;announce-position = yes

;

; If you have specified "limit" or "more" for the announce-position option, then the following

; value is what is used to determine what announcement to play to waiting callers. If you have

; set the announce-position option to anything else, then this will have no bearing on queue operation

;

;announce-position-limit = 5

;

; What's the rounding time for the seconds?

; If this is non-zero, then we announce the seconds as well as the minutes

; rounded to this value.

; Valid values are 0, 5, 10, 15, 20, and 30.

;

; announce-round-seconds = 10

;

; Use these sound files in making position/holdtime announcements. The

; defaults are as listed below -- change only if you need to.

;

; Keep in mind that you may also prevent a sound from being played if you

; explicitly set a sound to be an empty string. For example, if you want to

; prevent the queue from playing queue-thankyou, you may set the sound using

; the following line:

;

; queue-thankyou=

;

 ; ("You are now first in line.")

;queue-youarenext = queue-youarenext

 ; ("There are")

;queue-thereare = queue-thereare

 ; ("calls waiting.")

;queue-callswaiting = queue-callswaiting

 ; ("The current est. holdtime is")

;queue-holdtime = queue-holdtime

 ; ("minutes.")

;queue-minutes = queue-minutes

 ; ("seconds.")

;queue-seconds = queue-seconds

 ; ("Thank you for your patience.")

;queue-thankyou = queue-thankyou

 ; ("Hold time")

;queue-reporthold = queue-reporthold

 ; ("All reps busy / wait for next")

;periodic-announce = queue-periodic-announce

;

; A set of periodic announcements can be defined by separating

; periodic announcements to reproduce by commas. For example:

;periodic-announce = queue-periodic-announce,your-call-is-important,please-wait

;

; The announcements will be played in the order in which they are defined. After

; playing the last announcement, the announcements begin again from the beginning.

;

; Calls may be recorded using Asterisk's monitor/MixMonitor resource

; This can be enabled from within the Queue application, starting recording

; when the call is actually picked up; thus, only successful calls are

; recorded, and you are not recording while people are listening to MOH.

; To enable monitoring, simply specify "monitor-format"; it will be disabled

; otherwise.

;

; You can specify the monitor filename with by calling

; Set(MONITOR_FILENAME=foo)

; Otherwise it will use MONITOR_FILENAME=${UNIQUEID}

;

; Pick any one valid extension for monitor format recording. If you leave

; monitor-format commented out, it will not record calls.

;

; monitor-format = gsm|wav|wav49

;

; Monitor Type

; By setting monitor-type = MixMonitor, when specifying monitor-format

; to enable recording of queue member conversations, app_queue will

; now use the new MixMonitor application instead of Monitor so

; the concept of "joining/mixing" the in/out files now goes away

; when this is enabled. If you do not specify or comment out this option,

; it will default to the old 'Monitor' behavior to keep backward

; compatibility.

;

; monitor-type = MixMonitor

;

; ----------------------- TYPE MIXMONITOR OPTIONS -----------------------------

;

;

; You can specify the options supplied to MixMonitor by calling

; Set(MONITOR_OPTIONS=av(<x>)V(<x>)W(<x>))

; The 'b' option for MixMonitor (only save audio to the file while bridged) is

; implied.

;

; You can specify a post recording command to be executed after the end of

; recording by calling

; Set(MONITOR_EXEC=mv /var/spool/asterisk/monitor/^{MONITOR_FILENAME} /tmp/^{MONITOR_FILENAME})

;

; The command specified within the contents of MONITOR_EXEC will be executed when

; the recording is over. Any strings matching ^{X} will be unescaped to ${X} and

; all variables will be evaluated just prior to recording being started.

;

; The contents of MONITOR_FILENAME will also be unescaped from ^{X} to ${X} and

; all variables will be evaluated just prior to recording being started.

;

;

; This setting controls whether callers can join a queue with no members. There

; are three choices:

;

; yes - callers can join a queue with no members or only unavailable members

; no - callers cannot join a queue with no members

; strict - callers cannot join a queue with no members or only unavailable

; members

; loose - same as strict, but paused queue members do not count as unavailable

;

; joinempty = yes

;

;

; If you wish to remove callers from the queue when new callers cannot join,

; set this setting to one of the same choices for 'joinempty'

;

; leavewhenempty = yes

;

;

; If this is set to yes, the following manager events will be generated:

; AgentCalled, AgentDump, AgentConnect, AgentComplete; setting this to

; vars also sends all channel variables with the event.

; (may generate some extra manager events, but probably ones you want)

;

; eventwhencalled = yes|no|vars

;

; If this is set to yes, the following manager events will be generated:

; QueueMemberStatus

; (may generate a WHOLE LOT of extra manager events)

;

; eventmemberstatus = no

;

; If you wish to report the caller's hold time to the member before they are

; connected to the caller, set this to yes.

;

; reportholdtime = no

;

; If you want the queue to avoid sending calls to members whose devices are

; known to be 'in use' (via the channel driver supporting that device state)

; uncomment this option. (Note: only the SIP channel driver currently is able

; to report 'in use'.)

;

; ringinuse = no

;

; If you wish to have a delay before the member is connected to the caller (or

; before the member hears any announcement messages), set this to the number of

; seconds to delay.

;

; memberdelay = 0

;

; If timeoutrestart is set to yes, then the timeout for an agent to answer is

; reset if a BUSY or CONGESTION is received. This can be useful if agents

; are able to cancel a call with reject or similar.

;

; timeoutrestart = no

;

; If you wish to implement a rule defined in queuerules.conf (see

; configs/queuerules.conf.sample from the asterisk source directory for

; more information about penalty rules) by default, you may specify this

; by setting defaultrule to the rule's name

;

; defaultrule = myrule

;

; Each member of this call queue is listed on a separate line in

; the form technology/dialstring. "member" means a normal member of a

; queue. An optional penalty may be specified after a comma, such that

; entries with higher penalties are considered last. An optional member

; name may also be specified after a second comma, which is used in log

; messages as a "friendly name". Multiple interfaces may share a single

; member name. An optional state interface may be specified after a third

; comma. This interface will be the one for which app_queue receives device

; state notifications, even though the first interface specified is the one

; that is actually called.

;

; It is important to ensure that channel drivers used for members are loaded

; before app_queue.so itself or they may be marked invalid until reload. This

; can be accomplished by explicitly listing them in modules.conf before

; app_queue.so. Additionally, if you use Local channels as queue members, you

; must also preload pbx_config.so and chan_local.so (or pbx_ael.so, pbx_lua.so,

; or pbx_realtime.so, depending on how your dialplan is configured).

;

;member => DAHDI/1

;member => DAHDI/2,10

;member => DAHDI/3,10,Bob Johnson

;member => Agent/1001

;member => Agent/1002

;member => Local/1000@default,0,John Smith,SIP/1000

;

; Note that using agent groups is probably not what you want. Strategies do

; not propagate down to the Agent system so if you want round robin, least

; recent, etc, you should list all the agents in this file individually and not

; use agent groups.

;

;member => Agent/@1 ; Any agent in group 1

;member => Agent/:1,1 ; Any agent in group 1, wait for first

 ; available, but consider with penalty

; Cola de administradores

[administradores]

music=default

strategy=ringall

timeout=15

retry=5

wrapuptime=0

maxlen = 0

announce-frequency = 0

announce-holdtime = yes

member => SIP/7000

member => SIP/5006

	pdf-book61b741e971de2

